
IPv6 transition experiences

Lorenzo Colitti



What works

 



Timeline
April 2005 Obtain and announce address space

... ...

July 2007 Network architecture and software engineering begin (20%)

January 2008 First pilot router. Google IPv6 conference, Google over IPv6 for attendees

March 2008 ipv6.google.com (IETF 72)

November 2008 First Google over IPv6 networks enabled. Google over IPv6 at RIPE / IETF / ...

January 2009 Google over IPv6 publicly available

March 2009 Google maps available over IPv6, 3x increase in traffic

August 2009 IPv6 enabled in Android (Droid and Nexus One)

February 2010 Youtube available over IPv6, 10x increase in traffic

March 2010 Backbone fully dual-stack. IPv6 in AppEngine

June 2010 Googlebot starts crawling IPv6

And all this with a small core team



Gradual approach
Work from the outside, move in
First the load-balancer, then the frontend, then...

"Address coercion" protects IPv4-only code from IPv6
Take IPv6 address
Remove user-modifiable bits
Hash into 224.0.0.0/3

Sometimes not perfect
"Your last login was from 238.1.2.3"

Development strategy



Network design principles

Make design as similar to IPv4 as possible
Principle of least surprise for NOC, other engineers, ...

Dual stack everything
Scales better, no added maintenance / support load
Using IS-IS for IPv6? Might want to use it for IPv4
Using OSPFv3? Make sure implementation is proven

 Use IPv4 to carry IPv4 routes, IPv6 to carry IPv6 routes
Don't block convergence of one protocol on another
Avoid ::ffff:10.0.0.1 and ::10.0.0.1 as IPv6 next-hops



Testing and iteration

Implementations mostly work, but will have bugs
Nobody has really kicked the tyres

Don't expect something to work just because it's supported
If you find a bug in the lab:

Report it, and keep testing!
There are many more bugs to find
We don't have time to fix them one by one

Work around it in the design
If you get to something that is supportable, trial it
That will help you find the hard bugs



For example...

If a firewall filter term has a 1-bit match in bits 32-64, and 
then term with a 2-bit match on bits 64-96, the second term 
will not match on hardware X on version Y
In particular circumstances, FIB and RIB may get out of 
sync due to race conditions in pushing updates
If DAD triggers due to an interface loop, it requires removing 
config from the interface and putting it back
If a linux gets a packet too big on a receive-only interface 
with no route, it ignores it
Are you going to find these in the lab?

We only saw the race condition after months in 
production in a fair number of datacenters



What's not working

 



Broken IPv6

Clients try IPv6 first, but IPv6 not as reliable as IPv4
Host-local errors

No IPv6 address, no default route, ...
Fast, no problem if application falls back (e.g., not Java)

Network errors
Router replies to SYN packets with unreachables
Network spoofs RST packets

Blackholing, MTU holes
Misbehaving router, packet loss in core
Misconfigured firewalls dropping ICMP



What's the damage?

Local failure, RST: fast
Unreachables: OS-dependent timeout

Windows: 20 seconds
Mac: 4 seconds
Linux: instant

Blackholing similar (but Linux timeout is ~3 minutes)
MTU holes: only some TCP stacks recover (in seconds)
Even if failure is fast applications may have other limits

e.g., MSIE >= 7 gives up completely after 5 attempts



Home gateway behaviour

Routers may turn on 6to4 and go through broken relays
At best, it will cause a latency increase
Relay may introduce packet loss or refuse to route 
packets not originating from 2002::/16
This will break things even if there is real IPv6 
connectivity!

Routers may turn on 6to4 with private addresses
This will never work
... but some implementations do it anyway



Host behaviour

Hosts may prefer 6to4 router over native IPv6 router
e.g., if 6to4 router sends RAs more frequently

Host may prefer 6to4 address over IPv4 address
Not using RFC3484-compliant getaddrinfo()
Using private addresses

Known issue in RFC 3484
Similar considerations for Teredo

High setup times, uncertain reliability
Most implementations know better than this

Firewalls may block or break IPv6 (e.g., blocking ICMPv6)



My favourite

Home gateway sending out an RA of ::/64
Host ignoring the unreachables
24-second timeout



Brokenness numbers (not final!)

For all clients:
Internet: 0.082% breakage (was 0.09% in June)
ISP A: 0.058% (was 0.064%)
Whitelisted ISP: 0.014% (was 0.03%)

Spread with IPv4 is less significant than above
Whitelisting masks brokenness
Returning only one AAAA helped

Without OS X, numbers are in four nines territory

1 week 1 month
Internet 0.039% 0.041%
ISP A 0.0080% 0.0090%
Whitelisted ISP 0.0097% 0.0082%



How do we fix this?

Router problems
Need router upgrade
Home gateways not upgraded, often not upgradable
Hard to figure out what the problem is

Host problems
Workarounds in individual applications (e.g., Chrome)
To fix all apps, need OS upgrade
OS upgrade can also work around router problems

Only real fix can happen in the hosts
Don't use 6to4 or Teredo

There is hope: Apple already fixing OS X, Airport


