Amazon SageMaker Components for Kubeflow Pipelines

By GIXnews

Today, we announced the public preview of Amazon SageMaker Components for Kubeflow Pipelines. Machine learning (ML) developers using Kubeflow Pipelines can convert their existing pipeline steps to run on SageMaker with the SageMaker Components. For instance, ML teams can SageMaker to use managed training on Spot instances, which will automatically set up model checkpoints to S3 so that you can pause and resume training from the last saved state. Other SageMaker features that are supported in Kubeflow Pipeline are built in algorithms, managed distributed training, and hyperparameter tuning. In addition, SageMaker can change instance types with one parameter swap, replacing the complicated autoscaling config in Kubernetes.

Source:: Amazon AWS